ASCENS
Autonomic Service Component Ensembles

Martin Wirsing and Matthias Hölzl
LMU Munich, Germany

AWARENESS Inter-Project Workshop
Ensembles

- Massive numbers of nodes
- Extremely heterogeneous
- Complex interactions between nodes
- Complex interactions with humans or other systems
- Operating in open and non-deterministic environments
- Dynamic adaptation to
 - new requirements
 - technologies and
 - environmental conditions
Approach

Service Component Ensemble (SCE)
reliable, predictable, self-adaptive,
balances efficient execution and
flexible behaviour via
dynamic self-expression

Service Component (SC)
self-aware, adaptive
secure and safe
based on
knowledge

Engineering Emergence
Design and runtime control
of intended and
emergent behaviours,
static and dynamic
support from
formal methods

Martin Wirsing
Approach

Service Component Ensemble (SCE)

Case Studies
- Science Clouds
- Swarm Robotics
- Collaborating E-Vehicles

Tool Integr. Platform
Engineering
SCEL

Open-Ended Environment

SCE Language
(SCEL)

Correctness of SCs and SCEs
Foundational Models

Tool Integr. Platt.
Engineering
SCEL

Knowledge
Self-Awareness
Adaptation & Self-Expression

Martin Wirsing

ascens
Build a coherent and **integrated suite of models and techniques for constructing**

Autonomic Service-Component Ensembles

- Open environments
- Changing requirements
- Non-determinism
- Complexity Scale
- Reliable
- Predictable
- Resilient
- Fault tolerant
Summary of Results Year 1

- Languages SCEL V1.0, BIP, KnowLang for modeling, analyzing and specifying knowledge in ensembles
- System model GEM for adaptive and self-aware ensembles
- SOTA approach for specifying and analyzing adaptation requirements
- Verification techniques for qualitative and quantitative properties of systems in uncertain environments
- Application requirements and system needs for case studies
 - Robot ensembles, science cloud, collaborative e-vehicles

- Dissemination
 - Website with blog
 - 50 publications
 - 2 summer schools (co-organized)
 - ASCENS results taught in > 15 courses and tutorials
Confidence and Reliability: Difficulties

- Ensembles are
 - infinite state systems with varying members and environments
 - concurrent systems suffering the state space explosion problem
- Uncertain environment and changing requirements
- Heterostatic ensembles (Klopf ~1975)
 - maximize performance instead of simple goal satisfaction

- Confidence vs. confidentiality
 - Confidence in reliability of a system = subjective reliability of the system
 - Confidentiality = notion of information security
Confidence and Reliability Ideas: A Formal Methods Approach

- Specify confidentiality and reliability requirements
 - in a (continuous/discrete time stochastic) temporal logic
- Validate and verify requirements for SC ensembles
 - A posteriori verification
 - Compositional techniques for
 - specific properties (e.g. deadlock)
 - specific architectures (e.g. controllers, from synchronous to asynchronous communication, ...)
 - Correctness by supervised construction
 - Correctness preserving architectural principles for system construction and adaptation
 - Runtime monitoring of global/emergent properties
 - Predictive model analysis (at design and runtime)
Confidence and Reliability

- **Advice from other projects**
 - Trust models for measuring confidence and reliability
 - Measures for confidence of/in (self-) aware components
 - Designing emergence

- **Challenges for measuring confidence**
 - Monitoring global and emergent properties
 - Specifying and controlling adaptation
 - Combining formal reasoning techniques with models of trust
 - „Pervasive formal methods“ for enhancing confidence
 - Interaction of global and local confidence